

- NCI risk factors for pediatric ALL (BCP>TCP)
 - Age
 - Standard risk: >1 year-of-age; <10 years-of-age
 - WBC
 - ≥50,000 vs <50,000
- Immunophenotype classification (BCP and TCP)
- Genetics of leukemia cells
 - rMLL, hypodiploidy (<45), iAMP21—<u>Unfavorable</u>
 - Double trisomy 4+10, ETV6-RUNX1 fusion gene-Favorable
 - BCR-ABL fusion gene—<u>Requires special treatment</u>

NCI = National Cancer Institute; BCP = B-cell precursor; TCP = T-cell precursor; WBC = white blood cell; rMLL = Mixed-Lineage Leukemia gene rearrangement; iAMP21 = intrachromosomal amplification of chromosome 21; BCR-ABL = breakpoint cluster region-Abelson. Kanwar VS, et al. http://emedicine.medscape.com/article/990113-overview. Accessed January 14, 2013. Bhojwani D, et al. *Leukemia*. 2012;26(2):265-270. Harrison CJ. *Clin Lab Med*. 2011;31(4):631-647.

Diverse "Associated" Chromosomal Abnormalities

Frequency of Genomic Amplifications and Deletions in Pediatric ALL						
Group	Subtype	N	Amplifications (mean±SD)*	Deletions (mean±SD)*	All Lesions (mean±SD)*	
B-ALL	Hyperdiploidy with >50 chromosomes	39	9.56±3.59 (5-20)	1.59±2.49 (0-11)	11.13±5.0 (5-27)	
B-ALL	TCF3-PBX1	17	1.59±0.62 (1-3)	2.12±1.17 (1-4)	3.7±1.53 (2-7)	
B-ALL	ETV6-RUNX1	47	0.89±1.51 (0-8)	6.0±4.63 (1-21)	6.68±4.8 (0-21)	
B-ALL	rMLL	11	0.09±0.3 (0-1)	0.91±1.81 (0-6)	1±1.79 (0-6)	
B-ALL	BCR-ABL1	9	4±5.3 (0-12)	4.2±4.15 (0-12)	6.8±4.52 (0-13)	
B-ALL	Hyperdiploidy with 47-50 chromosomes	23	1.70±1.55 (0-7)	3.5±3.12 (0-12)	5.1±4.31 (0-15)	
B-ALL	Hypodiploid	10	1.1±1.91 (0-6)	6.0±4.42 (3-18)	7.1±6.12 (3-24)	
B-ALL	Other	36	1.06±3.21 (0-19)	4.64±5.14 (0-20)	5.58±6.57 (0-23)	
B-ALL	Total	192	2.97±4.28 (0-20)	3.83±4.2 (0-21)	6.63±5.56 (0-27)	
T-ALL		50	0.9±1.98 (0-9)	4.9±6.21 (0-30)	5.8±7.12 (0-39)	
All Cases		242	2.54±4.0 (0-20)	4.06±4.69 (0-38)	6.46±5.90 (0-39)	

*Range is shown in parentheses.

B-ALL = acute B-lymphoblastic leukemia; T-ALL = acute T-lymphoblastic leukemia. Mullighan CG, et al. *Nature.* 2007;446(7137):758-764.

Induction Therapy

Treatment Options	Agents
Pediatric	
New York	Vincristine, prednisone, daunomycin, asparaginase, CPM
COG/SR	Vincristine, DXM, prednisone, asparaginase
COG/HR+T-cell	Vincristine, DXM or prednisone, prednisone, asparaginase, daunomycin
Adult	
Linker	Vincristine, DXM or prednisone, asparaginase, daunomycin
UKALL XII	Vincristine, DXM or prednisone, asparaginase, daunomycin
HyperCVAD	Vincristine, DXM, doxorubicin, hyperfractionated CPM

CPM = cyclophosphamide; COG = Children's Oncology Group; UKALL = Medical Research Council Acute Lymphoblastic Leukemia; HyperCVAD = hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone.

National Cancer Institute. http://www.cancer.gov/cancertopics/pdq/treatment/childALL/Health Professional/page4. Accessed January 14, 2013. NCCN Clinical Practice Guidelines in Oncology. http://www.nccn.org/professionals/physician_gls/pdf/all.pdf. Accessed January 4, 2013.

Presymptomatic CNS Therapy (CNS Prophylaxis)

- Effective systemic chemotherapy
 - HD MTX, DXM, asparaginase, thioguanine
- Early intensification and optimization of intrathecal therapy
 - Triple IT therapy vs IT MTX
- Cranial irradiation
 - A central role in the 1960's but employed less because of serious long-term sequalae

HD = high dose; MTX = methotrexate; IT = intrathecal. Pui CH, et al. *Semin Oncol.* 2009;36(4 suppl 2):S2-S16.

CCG-Modi	fied	Stand	dard	BFN
Induction (5 weeks)	Conso (8 weel	lidation ks)		
VPLD	CPM AraC 6-MP	2 week delay	CPM AraC 6-MP	2-week delay
16 weeks of 6 weeks o				g
Interim Maintenance (8 weeks)	Delayed (8 weeks	Intensifica s)	ation	
Oral 6-MP/Oral MTX	Vincristin Doxorubi L-aspara	cin/	CPM AraC 6-MP	2-week delay
achman JB, et al. <i>N Engl J Med.</i> 1998;33	38(23):1663-	1671.		

Augmented BFM						
Induction (5 weeks)	Consoli (8 week					
VPLD No delays	AraC 6-MP	Vincristine- L-asparaginase reeks of inten	CPM AraC 6-MP	Vincristine- L-asparaginase erapy		
Interim Maintenance # (8 weeks)	1 Delay (8 we	yed Intensificat eeks)	ion			
Vincristine/Capizzi MTX L-asparaginase	Doxo		CPM AraC 6-MP	Vincristine- L-asparaginase		
Interim Maintenance #/ (8 weeks)		Delayed Intensification (8 weeks)				
Vincristine/Capizzi MTX L-asparaginase	Doxo	rubicin/	CPM AraC 6-MP	Vincristine- L-asparaginase		
Nachman JB, et al. <i>N Engl J Med.</i> 19	98;338(23):1663-1671.				

Study	Population	IV MTX Dose	EFS Advantage
CCG-139	IR	0.5 g/m ²	No
CCG-144	SR	33.6 g/m ²	No
CCG-5971	Lymphoblastic lymphoma	5 g/m ²	No

IR = intermediate risk. Lange BJ, et al *Med Pediatr Oncol.* 1996;27(1):15-20. Nathan PC, et al. *Leuk Lymphoma.* 2006;47(12):2488-2504. Abromowitch M, et al. Presented at: American Society of Hematology Annual Meeting; December 6-9, 2008; San Francisco, California. Abstract 3610.

2011; Chicago, Illinois. Abstract 3.

Maintenance

- Daily mercaptopurine + weekly MTX since the 1960s
 - Full dose is more effective than half dose
 - CPM and cytarabine add toxicity but no benefit
 - Childhood ALL is unique in requiring prolonged therapy
 - 2 years>18 months; 3 years>2 years
 - L92-13 study with 1 year of intensive therapy
 - 60% EFS for HR and 60% EFS for SR
 - Vincristine/steroid pulses
 - Parenteral vs oral MTX

Pinkel D. Cancer. 1979;43:1128-1137. Tsuchida M, et al. Leukemia. 2010:24(2):383-396. Eden T, et al. Br J Haematol. 2010;149(5):722-733. Wehinger H, et al. Klin Padiatr. 1982;194(4):214-218. Koizumi S, et al. Cancer. 1988;61(7):1292-1300. Brandelise S, et al. J Clin Oncol. 2010;28(11):1911-1918.

Pediatric BCP Risk Stratification

AALL0932/AALL1131

,					
Day 8 PB MRD	<.01%	0.01%-1%	>1%		
Day 29 BM MRD	<.01%	<.01%	<.01%	>.01%	
Subset/MRD					
Age <1 year	Infant				
BCR-ABL	Ph+				
CNS 3	VHR				
Age >13 years	VHR				
Induction failure		VHF	र		
Hypodiploid, iAMP21, rMLL		VHF	ર		
NCI SR, TEL-AML1 fusion, Trisomy 4+10	LR SR		HR		
NCI SR, Other	SR HR VHI		VHR		
NCI HR, Age <13 years		HR		VHR	

AALL0932 = newly diagnosed standard-risk precursor B-ALL protocol; AALL1131 = newly diagnosed high-risk precursor B-ALL protocol; PB = peripheral blood; BM = bone marrow; LR = low-risk. Hunger SP, et al. *Pediatr Blood Cancer.* 2012 December 19 [Epub ahead of print]. Hunger SP, et al. J Clin Oncol. 2012;30(14):1663-1669.

COG B-Cell Precursor Subsets

Subset	Subsets	Percent	Expected EFS
Infant	1	3%	50%
Ph+	1	3%	75%
VHR	8	22%	<80%
HR	3	23%	88-90%
SR	2	34%	90-95%
LR	1	15%	>95%

Hunger SP, et al. *Pediatr Blood Cancer*. 2012 December 19 [Epub ahead of print]. Schultz KR, J Clin Oncol. 2009;27(31):5175-81. Gaynon PS, et al. Leukemia. 2010;24(2):285-97.

Risk Stratification: Pediatric, T-Cell							
	AALL0434						
	Presenting Features	M1 on Day 8 or 15 Day 29 MRD <.1%	M1 on Day 29 Day 29 MRD .1%-1%	M2/3 on Day 29 or Day 29 MRD >1%			
	Age 1-9 years WBC <50,000 No Testes disease CNS 1	LR	IR	HR			
	Age >10 years WBC >50,000 Testes disease CNS 3		IR	HR			
• 1	 No validity of conventional age/WBC End consolidation MRD (day 85!) Adverse ETP 						
Schultz		09;27(31):5175-81. K	= early T-phenotype. rampera M, et al. <i>Br J H</i>	laematol. 2003;120(1):7	74-9.		

"Targeted Therapy"						
Ph+ /	ALL ii	า (hildre:	'n.	Pre	e-Imatinik
		· C		<i>,</i>		
Study Groups	Years of Study	N	Percentage	CR	EFS	Reference
Dana-Farber	1981-89	15	3.5	80	0	Fletcher et al (1991)
POG	1981-89	58	2.3	78	7	Crist et al (1990)
St. Jude	1984-94	23	3.6	87	33	Ribeiro et al (1987)
BFM/AEIOP	1986-95	61	1.3	75	38	Schrappe et al (1998)
NOPHO	1986-97	17	1.3	NA	41	Forestier et al (2000)
CCG	1988-95	30	2.3	97	20	Uckun et al (1998)
UKALL	1990-97	25	2	NA	27	Hann et al (2001)
Dana-Farber	1991-95	6	1.6	100	50	Silverman et al (2001)
St. Jude	1994-98	6	2.9	89	29	Pui et al (2004)
AEIOP	1995-99	30	2	86	46	Arico et al (2002)
UKALL	1997-2002	42	2.3	86	52	Roy et al (2005)

AEIOP = Associazione Italiana Ematologia Oncologia Pediatrica; NOPHO = Nordic Society for Pediatric Hematology and Oncology. Jones LK, et al. *Br J Haematol.* 2005;130(4):489-500.

Adolescents	and	Young	Adults
-------------	-----	-------	--------

		Induction Rate		EFS	
Trials	Age (years)	Adult	Pediatric	Adult	Pediatric
FRALLE-93/ LALA-94	15-20	83%	94%	41%	61%
DCOG/HOVON	15-18	91%	98%	34%	69%
NOPHO92/ Swedish Group	15-18/15-20	90%	99%	39%	74%
ALL97/UKALL XII	15-17	94%	98%	49%	65%
CCG/CALGB	16-20	90%	90%	34%	63%
NOPHO/Finnish Group	10-16/16-25	97%	96%	60%	67%

FRALLE = French Acute Lymphoblastic Leukemia Group; LALA-94 = Leucemies Aigues Lymphoblastiques de l'Adulte-94; DCOG = Dutch Childhood Oncology Group; HOVON = Dutch Haemato-Oncology Association Studies; CALGB = Cancer and Leukemia Group B. McNeer JL, et al. *Curr Opin Oncol.* 2012;24(5);487-494.

Despite Succe BMT, Most A	LL Patien		apse Die
Site of R	elapse (n)	5-Year Survival	
Isolated E		24%	
Combine	d BM (264)	39%	
Isolated 0	CNS (409)	59%	
Isolated t	estes (104)	58%	
Average		35%	
Nguyen K, et al. <i>Leukemia.</i> 2008	3;22(12):2142-2150.		

		1983-1987 6-Year Survival N=3712, (n)	1988-2002 5-Year Survival N=9585, (n)
Very Early CR1 <18 months	Isolated	6% (233)	11% (412)
	Combined	6% (34)	12% (86)
Intermediate CR1 18-36 months	Isolated	11% (193)	18% (324)
	Combined	11% (26)	40% (54)
Late CR1 >36 months	Isolated	43% (215)	43% (387)
	Combined	49% (60)	60% (124)
No diffe	rences from	n 1989-1995 vs 19	96-2002

Candidate Agents

Chemotherapy

- Antipurines
- Clofarabine, nelarabineLiposomal vincristine
- Flt3 inhibitors
 - Lestaurtinib*, quizartinib (AC220)*
- Proteosome inhibitors
 - Bortezomib, carfilzomib
 - mToR inhibitors
 - Temsirolimus, evrolemus
- Aurora kinase inhibitors*
 BCL-2 inhibitors obstoclay
- BCL-2 inhibitors obatoclax*
- Notch inhibitors

.

- Survivin inhibitors EZN3042*
- Epigenetic strategies
- Vorinostat/decitabine
- Toll-like receptor 9 agonists
- CXCR4 inhibitor plerixafor

*Investigational drug not currently FDA approved.

Immune directed therapies

- Monoclonals – Rituximab, Epratuzumab*
- Immunotoxins
- Moxetumomab*, SGN3419*, Inotuzomab ozogamicin*, SAR19a*, Combotox*
- Immune constructs
 Blinatumomab*

The Right Stuff

- The Right Drug
- The Right Target
- The Right Disease
- The Right Context
- The Right Schedule
 - The Right Dose
- The Right Population

Gaynon P, et al. Br J Haematol. 2005;131(5):579-587.

Translating Guidelines and Clinical Trial Data to Improved Acute Lymphoblastic Leukemia Management and Outcomes

Post-Activity Evaluation

To receive documentation of credit, please print and complete the evaluation and mail or fax it to NACCME

Location of Meeting

Date of Meeting

NACCME would appreciate your feedback on the quality and impact of this activity. Please answer the following questions, some of which are rated on a 5-point Likert scale (1 = strongly disagree/poor/very little; 5 = strongly agree/excellent/great deal).

1. To what extent were you able to achieve each of the following learning objectives? Outline the current classification system for ALL and the differences in biology and treatment strategies between pediatric and adult patients with ALL Review current evidence for induction, consolidation, maintenance, and transplant strategies in the treatment of ALL in pediatric and adult patients Summarize current guideline recommendations for the treatment of both Ph-negative and Phpositive ALL patients Outline strategies for the treatment of patients with refractory or relapse ALL Identify emerging treatments and the role of currently available targeted agents in the management of ALL 2. Please rate the faculty in terms of their knowledge and expertise. Please rate the faculty in terms of their teaching ability. 3. 4. Please rate the following components relating to this activity: Content Relevance to your practice Educational format Audience-participation portions (eg, Q&A, pre/post-testing) Handouts and/or other materials supporting the activity Overall 5. How much did you learn as a result of this CE program?

- 6. Of the patients you see on a weekly basis, how many will benefit from the information you learned today?
 - $\hfill 10 \mbox{ or fewer } \hfill 20 \hfill 30 \hfill 40 \hfill 50 \mbox{ or more }$
- 7. Did this activity meet your educational needs? 8. Did this activity increase your knowledge?
 - □ Yes □ No □ Yes □ No
- 9. Did this activity increase your competence?
 10. Did this activity increase your confidence?

 \[
 Yes
 \]
 No
 \]
 Yes
 \]
 No
 \]
 Yes
 \]
 No
 \]
- 11. The therapeutic recommendations presented in this activity did not encourage inappropriate or excessive use of products/devices.
 - □ Agree □ Disagree
- 12. The information presented in this activity did not serve to advance a proprietary interest of any commercial entity.
 - □ Agree □ Disagree
- 13. How many patients with ALL do you impact on a weekly basis?
 - □ 5 or fewer □ 10 □ 15 □ 20 □ 25 or more
- 14. According to Nguyen et al, what is the average 5-year survival rate for children with ALL after a first relapse?
 - a. Less than 25%
 - b. 25% to 50%
 - c. 51% to 75%
 - d. More than 75%
- 15. How confident are you in your ability to optimize outcomes in children with ALL?
 - a. Very confident
 - b. Confident
 - c. Somewhat confident
 - d. Not confident
- 16. How do you rate your ability to appropriately treat patients with relapsed or refractory ALL?
 - a. Excellent
 - b. Good
 - c. Fair
 - d. Poor

17. How often do you intend to use novel chemotherapy for reinduction in children with more than 1 relapse of ALL?

- a. Always
- b. Often
- c. Rarely
- d. Never

18. Why do you plan to increase use of novel chemotherapy for reinduction in children with more than 1 relapse of ALL?

- □ Because novel chemotherapy has demonstrated the potential to increase survival rates
- Because of challenges associated with treatment alternatives
- I do not intend to increase because I already adhere to this recommendation
- I do not intend to increase because I disagree with this approach
- □ I do not intend to increase because of barriers outside of my control

19. Do you intend to make any changes to your practice?

Yes, please specify:

□ No

- 20. What barriers outside of your control prevent you from changing your practice and/or optimizing patient outcomes? (check all that apply)
 - □ Lack of available guidelines for ALL treatment
 - □ Formulary placement
 - □ Affordability concerns on the part of the patient or caregiver
 - Patient adherence
 - □ Lack of patient or caregiver education regarding disease/treatment
 - Adverse effects of ALL therapies
 - □ Lack of influence over treatment selection
 - Other:_____

21. How might future activities help you address those barriers?

22. Would you be interested in additional educational activities within this therapeutic area?

- Yes what topics would you like to learn more about?
- 🗆 No

23. In which of the following other therapeutic or practice areas do you have educational needs?

(check all that apply)

- Anemia
- Anesthesia
- Bacterial Infections
- Breast Cancer
- Colorectal Cancer
- Deep Vein Thrombosis
- Fungal Infections
- □ Hematologic Malignancies
- □ Hemostasis
- Law

- Lung Cancer
- Medication Errors/Safety
- Oncology Supportive Care
- D Pain
- Prostate Cancer
- □ Psychiatry
- Transition of Care
- Transplant Medicine
- □ Other:_____

24. In which of the following formats do you prefer to receive education? (check all that apply)

- □ Live symposium
- □ Small-group meeting
- Phone teleconference
- □ Live web meeting
- □ On-demand web
- Handheld/mobile device
- □ Enduring print
- □ Other:

25. How much time did you spend participating in this activity?

REQUEST FOR CREDIT

Please complete all sections to be eligible for credit and return to course registrar at the meeting site.

E-mail [REQUIRED]		Degree	
Name	ןו	Fitle/Specialty	
REQUIRED FOR PHARMACISTS:	Date of Birth (MM/DD)		NABP ID
Address		Affiliation	
City	State	Zip	Phone

NACCME: 300 Rike Drive, Suite A, Millstone Township, NJ 08535; Phone: 609-371-1137; Fax: 609-371-2733